CATTANEO LORENZO | Cycle: XXXVI |
Section: Electronics
Advisor: IELMINI DANIELE
Tutor: GERACI ANGELO
Major Research topic:
Stochastic devices and arrays for hardware security and neuromorphic computing
Abstract:
The research project focuses on the study, design, and testing of array-based solutions using novel stochastic memory devices for neuromorphic and security applications. It is a well-established fact that stochasticity plays a key role in neuromorphic computing operations, and embedded non-volatile memory technologies appear promising alternatives to CMOS circuits for the emulation of the neuronal behaviour in the nanoscale, thanks to their inherently random transport mechanisms and properties. Furthermore, stochastic phenomena in memory devices can also provide ideal sources of entropy for true random number generators (TRNGs) and physical unclonable functions (PUFs), reviving the interest in applications based on the stochastic computing paradigm, such as the probabilistic inference from real-time data. The availability of TRNG in stochastic memory devices, together with their high-density 3-D integration with crossbar arrays capability, can provide the necessary bitstream within a small area and low power consumption. In this scenario, Bayesian networks are an example of stochastic networks that can be used in a probabilistic inference engine to estimate the probability of hidden causes, and that can be mapped in memory arrays. In these circuits, probabilities are encoded within spiking signals generated by the TRNG, showing compact design, power efficiency, and high resilience to variations. Other examples of hardware stochastic networks already implemented in memory arrays are Markov chain Monte Carlo sampling (MCMC), reservoir computing (RC), and echo state networks (ESN). On the other hand, the ability to generate high-quality random bitstream at low power and with low area occupation is gaining interest also in the security field, where designing hardware-intrinsic primitives (PUFs) capable of generating unrelated responses to different input is an essential feature.
Cookies
We serve cookies. If you think that's ok, just click "Accept all". You can also choose what kind of cookies you want by clicking "Settings".
Read our cookie policy
Cookies
Choose what kind of cookies to accept. Your choice will be saved for one year.
Read our cookie policy
-
Necessary
These cookies are not optional. They are needed for the website to function. -
Statistics
In order for us to improve the website's functionality and structure, based on how the website is used. -
Experience
In order for our website to perform as well as possible during your visit. If you refuse these cookies, some functionality will disappear from the website. -
Marketing
By sharing your interests and behavior as you visit our site, you increase the chance of seeing personalized content and offers.